
Pitowsky Spacetimes, Malament-Hogarth Spacetimes, and All
That

1. Supertasks
Trivial vs. non-trivial supertasks.
Relativity theory seems to place a limit on interesting supertasks. E.g.

imagine an 1-machine which tries to complete an in�nite number of opera-
tions in a �nite time by speeding up�it performs the �rst operation in 1 sec,
the send in 1/2, sec, the third in 1/4 sec. etc. But to do this the parts of the
machine must move faster and faster, and at some juncture they be moving
faster than light, contradicting relativity theory. (Shrink the parts? Does
this run into quantum limitations?)
On the other hand, relativistic spacetimes seem to open the possibility

of performing bifurcated supertasks in which one party (the slave) has an
in�nite amount of proper time available in which to carry out an in�nite
number of operations, and the other party (the master) reaps the bene�t of
these labors.

2. Pitowsky spacetimes

Def. 1 M; gab is a Pitowsky spacetime i¤ there are timelike half-
curves 
1; 
2 � M such that

R

1
d� = 1,

R

2
d� < 1, and 
1 �

I�(
2). (A timelike half-curve is a future-directed timelike curve
which has past endpoint and which is inextendible in the future.
For such a curve 
, I�(
) := [p2
I�(p).)

Fact: Minkowski spacetime is Pitowskian.)
(a) See Fig. 1. 
1 is an inertial trajectory and 
2 spirals ever more tightly

about 
1 in order to have a �nite proper length.
(b) See Fig. 2. 
1 is a timelike curve with constant acceleration.

R

1
d� =

1.

2 : u(t) = [1 � exp(�2t)]1=2:

R

2
d� = 1. Acceleration of 
2 is un-

bounded: the magnitude of the four-vector acceleration is a(t) = exp(2t)=[1�
exp(�2t)]1=2, which blows up as t!1.
Conjecture: Any spacetime that contains timelike half-curves of in�nite

proper length is Pitowskian.
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Problems with trying to use Pitowsky spacetimes to perform bifurcated
supertasks: 1) 
2 has to satisfy physically unreasonable demands. 2) At no
de�nite time does 
2 know the fruits of 
1�s labors.

3. Malament-Hogarth spacetimes

Def. 2 M; gab is a Malament-Hogarth spacetime i¤ there is a
timelike half-curve 
1 � M such that

R

1
d� = 1 and a point

p 2M such that 
1 � I�(p).

Examples:
(a) Let M; gab be any spacetime. There is a real-valued 
 : M ! R and

a p 2 M such that M � p;
2gab is a Malament-Hogarth spacetime. Choose

 which is unity outside some compact set C and which approaches 1 as
p 2 C is approached.
(b) Some spacetimes with CTCs will be Malament-Hogarth spacetimes

because there are points p such that I�(p) = M and M contains timelike
half-curves of in�nite proper length. Examples: 2-dim Minkowski spacetime
rolled up along the time axis; Gödel spacetime.
(c) anti-De Sitter spacetime. This spacetime is stably causal and, there-

fore, possess a global time function. See Fig. 3.
(d) Reissner-Nordstrom spacetime. See Fig. 4.

4. Properties of Malament-Hogarth spacetimes
(a) Malament-Hogarth spacetimes are not globally hyperbolic (i.e. do

not possess a Cauchy surface). Proof 1 : If M; gab is globally hyperbolic and
p; q 2M are timelike related, then there is a longest timelike curve connecting
them. But in a M-H spacetime with a point p 2M such that 
1 � I�(p) andR

1
d� =1, we can always beat any �nite bound on the length of a timelike

curve from the start point q of 
1 to p. Proof 2 : Suppose that the spacetime
is globally hyperbolic and Malament-Hogarth. Choose a Cauchy surface S
through p. 
1 must intersect S at some point p

0. But 
1 � I�(p), so there is
a timelike curve from p to p0, and S is not achronal.
Thus, Minkowski spacetime and many other familiar spacetimes such as

the FRW cosmological models are not Malament-Hogarth spacetimes. But
Malament-Hogarth spacetimes are among the solutions to Einstein�s �eld
equations with sources satisfying standard energy conditions.

(b) Malament-Hogarth spacetimes involve divergent blue-shift e¤ects.
Suppose thatM; gab contains a timelike half-curve 
1 �M such that

R

1
d� =

2



1 and a point p 2 M such that 
1 � I�(p). Suppose also that there is an-
other timelike curve 
2 from the start point q to p such that

R

2
d� < 1.

And suppose that the family of null geodesics from 
1 to 
2 forms a 2-dim
sub-manifold in which the time order of emission matches the time order of
reception (see Fig. 5). Let !1(� 1) and !2(� 2) be respectively the frequency
of a photon at emission at 
1 and the frequency at reception at 
2. If !1(� 1)

is constant along 
1, then then

p2Z
q

!2(� 2)d� 2 diverges as p2 ! p. This means

that one can choose a sequence of points along 
2 such that the frequency of
received photons diverges as p is approached. It does not mean that every
sequence will exhibit the divergent behavior.
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